I-vector Extraction for Speaker Recognition Based on Dimensionality Reduction
نویسندگان
چکیده
منابع مشابه
Non-Linear I-vector Extraction for Speaker Recognition
We propose an algorithm for non-linear i-vector extraction. The algorithm is based on the manifold learning technique named Diffusion Maps (DM) and motivated by recent results that showed that the GMM supervectors reside on a low dimensional manifold. Our proposed method may further be processed using standard techniques such as Linear Discriminant Analysis (LDA), Within Class Covariance Normal...
متن کاملi-vector Based Speaker Recognition on Short Utterances
Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provi...
متن کاملFull multicondition training for robust i-vector based speaker recognition
Multicondition training (MCT) is an established technique to handle noisy and reverberant conditions. Previous works in the field of i-vector based speaker recognition have applied MCT to linear discriminant analysis (LDA) and probabilistic LDA (PLDA), but not to the universal background model (UBM) and the total variability (T ) matrix, arguing that this would be too much time consuming due to...
متن کاملI–vector transformation and scaling for PLDA based speaker recognition
This paper proposes a density model transformation for speaker recognition systems based on i–vectors and Probabilistic Linear Discriminant Analysis (PLDA) classification. The PLDA model assumes that the i-vectors are distributed according to the standard normal distribution, whereas it is well known that this is not the case. Experiments have shown that the i–vector are better modeled, for exa...
متن کاملClustering-based i-vector formulation for speaker recognition
In this paper, we first reformulate the derivation of the conventional i-vector scheme, which is the state-of-the-art utterance representation for speaker verification, as a modeling of universal background model (UBM)-based mixtures of factor analyzers (UMFA), and then propose a clustering-based UMFA method called CMFA. In UMFA, each analyzer is characterized by a subspace, and the same projec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.08.126